Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available December 9, 2025
-
Researchers have introduced a new algorithm to estimate structural models of dynamic decisions by human agents, addressing the challenge of high computational complexity. Traditionally, this task involves a nested structure: an inner problem identifying an optimal policy and an outer problem maximizing a measure of fit. Previous methods have struggled with large discrete state spaces or high-dimensional continuous state spaces, often sacrificing reward estimation accuracy. The new approach combines policy improvement with a stochastic gradient step for likelihood maximization, ensuring accurate reward estimation without compromising computational efficiency. This single-loop algorithm, designed to handle high-dimensional state spaces, converges to a stationary solution with finite-time guarantees. When the reward is linearly parameterized, it approximates the maximum likelihood estimator sublinearly, offering a robust solution for complex decision modeling tasks.more » « less
-
ObjectiveOur objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness. BackgroundControl transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework. MethodWe used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors. ResultsThe model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states. ConclusionThe results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters. ApplicationThe active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety.more » « less
-
Buckley, Christopher L.; Cialfi, Daniela; Lanillos, Pablo; Ramstead, Maxwell; Sajid, Noor; Shimazaki, Hideaki; Verbelen, Tim (Ed.)
-
Transitions of control are an important safety concern for human-automation teams and automated vehicle safety. While trust and situation awareness have been observed to influence transitions of control in automated vehicles, there are few objective measurements, making these concepts difficult to operationalize in increasingly automated decision systems. In this study, we take a step towards quantifying trust by mapping latent driver beliefs extracted from an active inference-factor analysis model of driver behavior and cognitive dynamics to subjective responses to trust questionnaires. Our results show that subjective trust is primarily correlated with model parameters affecting perceptual evidence accumulation rate, and the same parameters are significantly correlated with driver age.more » « less
An official website of the United States government
